Lehrplan – Integralrechnung

Ziele:

Die Schülerinnen und Schüler

  • wenden den Begriff „bestimmtes Integral einer Funktion f im Intervall [a; b]“ bei der näherungsweisen Berechnung von Flächeninhalten unter dem Graphen einer Funktion im I. und II. Quadranten an,
  • bilden Stammfunktionen bzw. unbestimmte Integrale ganzrationaler Funktionen,
  • erklären an Beispielen Zusammenhänge zwischen Differential- und Integralrechnung (Integrieren als Umkehrung des Differenzierens, „Grenzwert eines Differenzenquotienten“ versus „Grenzwert einer Summe von Produkten“),
  • berechnen bestimmte Integrale ganzrationaler Funktionen mithilfe des Hauptsatzes der Differential- und Integralrechnung,
  • berechnen Flächeninhalte von Flächen, die durch Graphen ganzrationaler Funktionen und zum Teil von Strecken begrenzt sind.

Inhalte:

  • bestimmtes Integral einer Funktion in einem Intervall [a; b]
  • Eigenschaften des bestimmten Integrals, Integrierbarkeit
  • bestimmtes Integral als Funktion der oberen Grenze, Hauptsatz der Differential- und Integralrechnung
  • unbestimmtes Integral, Stammfunktionen von Potenzfunktionen mit ganzzahligem Exponenten, Bilden von Stammfunktionen, Konstantenregel, Summenregel
  • Anwendung: Flächeninhaltsberechnungen

Quelle: https://lisa.sachsen-anhalt.de/index.php?id=59207

Ein Gedanke zu „Lehrplan – Integralrechnung

  1. Pingback: Integralrechnung |

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.